Abstract

An adaptation of the random forest algorithm for Fréchet regression is revisited, addressing the challenge of regression with random objects in metric spaces. To overcome the limitations of previous approaches, a new splitting rule is introduced, substituting the computationally expensive Fréchet means with a medoid-based approach. The asymptotic equivalence of this method to Fréchet mean-based procedures is demonstrated, along with the consistency of the associated regression estimator. This approach provides a sound theoretical framework and a more efficient computational solution to Fréchet regression, broadening its application to non-standard data types and complex use cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.