Abstract

Spherical SiO2 nanoparticles (SSNs) have been inventively synthesized using the Stöber method with sonication at medium–high frequencies (80, 120, and 500 kHz), aiming to control SSN size and shorten reaction time. Compared to the conventional method, such sonication allowed the Stöber reaction complete in 20–60 min with a low molar ratio of NH4OH/tetraethyl orthosilicate (0.84). The hydrodynamic diameters of 63–117 nm of SSNs were obtained under sonication with 80, 120, and 500 kHz of ultrasonic frequencies. Moreover, the SSNs obtained were smaller at 120 kHz than at 80 kHz in a multi-frequencies ultrasonic reactor, and the SSN size decreased with increasing ultrasonic power at 20 °C, designating the sonochemical unique character, namely, the SSN-size control is associated with the number of microbubbles originated by sonication. With another 500 kHz ultrasonic bath, the optimal system temperature for producing smaller SSNs was proven to be 20 °C. Also, the SSN size decreased with increasing ultrasonic power. The smallest SSNs (63 nm, hydrodynamic diameter by QELS, or 21 nm by FESEM) were obtained by sonication at 207 W for 20 min at 20 °C. Furthermore, the SSN size increased slightly with increasing sonication time and volume, favoring the scale-up of SSNs preparation. The mechanisms of controlling the SSN size were further discussed by the radical’s role and effects of ammonia and ethanol concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.