Abstract

Future shipboard power systems using Medium Voltage Direct (MVDC) technology will be based on a widespread use of power converters for interfacing generating systems and loads with the main DC bus. Such a heavy exploitation makes the voltage control challenging in the presence of tightly controlled converters. By modeling the latter as constant power loads (CPLs), one possibility to ensure the bus voltage stability is offered by the linearizing via state feedback technique, whose aim is to regulate the generating DC-DC power converters to compensate for the destabilizing effect of the CPLs. Although this method has been shown to be effective when system parameters are perfectly known, only a partial linearization can be ensured in case of parameter mismatch, thus, jeopardizing the system stability. In order to improve the linearization, therefore, guaranteeing the voltage stability, an estimation method is proposed in this paper. To this aim, offline tests are performed to provide the input data for the estimation of model parameters. Such estimated values are subsequently used for correctly tuning the linearizing function of the DC-DC converters. Simulation results for bus voltage transients show that in this way converters become sources of stabilizing power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.