Abstract

Context. Angular differential imaging (ADI) and spectral differential imaging (SDI) are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations from their host stars. Aims. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ~ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star. Methods. We analysed archival data of the β Pictoris system taken with the SINFONI integral field spectrograph located at ESO’s Very Large Telescope, originally taken to image β Pictoris b using ADI techniques. At each spatial position in the field, a scaled instance of the stellar spectrum is subtracted from the data after which the residuals are cross-correlated with model spectra. The cross-correlation co-adds the individual absorption lines of the planet emission spectrum constructively, while this is not the case for (residual) telluric and stellar features. Results. Cross-correlation with CO and H2O models results in significant detections of β Pictoris b with signal-to-noise ratios (S/Ns) of 13.7 and 16.4 respectively. Correlation with a T = 1700 K BT-Settl model provides a detection with an S/N of 22.8. This in contrast to application of ADI, which barely reveals the planet. While the adaptive optics system only achieved modest Strehl ratios of 19–27% leading to a raw contrast of 1:240 at the planet position, cross-correlation achieves a 3σ contrast limit of 2.7 × 10−5 in this 2.5 hr data set, a factor ~40 below the raw noise level at an angular distance of 0.36′′ from the star. Conclusions. Adaptive-optics assisted, medium-resolution IFS, such as SINFONI on the VLT and OSIRIS on the Keck Telescope, can be used for high-contrast imaging utilizing cross-correlation techniques for planets that are close to their star and embedded in speckle noise. We refer to this method as molecule mapping, and advocate its application to observations with future medium resolution instruments, in particular ERIS on the VLT, HARMONI on the ELT and NIRSpec, and MIRI on the JWST.

Highlights

  • To directly image an extrasolar planet, the light of its host star must generally be suppressed by orders of magnitude

  • The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ∼ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star

  • Residual starlight is present in the form of speckles which may mimic point-source objects, confusing the detection of companions and planets. Such residuals can be suppressed by adopting differential imaging strategies that assume that the residual pattern scales with wavelength, with the polarimetric state or is stable in time

Read more

Summary

Introduction

To directly image an extrasolar planet, the light of its host star must generally be suppressed by orders of magnitude. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 093.C-0626. In such imaging data, residual starlight is present in the form of speckles which may mimic point-source objects, confusing the detection of companions and planets. Residual starlight is present in the form of speckles which may mimic point-source objects, confusing the detection of companions and planets Such residuals can be suppressed by adopting differential imaging strategies that assume that the residual pattern scales with wavelength (spectral differential imaging; SDI), with the polarimetric state (polarimetric differential imaging; PDI) or is stable in time (angular differential imaging; ADI). Subsequent post-processing algorithms (cADI, LOCI, PCA, and ANDROMEDA) aim to optimize the residual attenuation while conserving the planetery signal (see e.g., Guyon 2011; Mawet et al 2012; Chauvin 2016, for reviews)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call