Abstract
Medium-frequency (mid-frequency) vibration analysis of complex structures plays an important role in automotive, aerospace, mechanical, and civil engineering. Flexible beam structures modeled by the classical Euler–Bernoulli beam theory have been widely used in various engineering problems. A kinematic hypothesis made in the Euler–Bernoulli beam theory is that the plane sections of a beam normal to its neutral axis remain planes after the beam experiences bending deformation, which neglects shear deformation. However, previous investigations found out that the shear deformation of a beam (even with a large slenderness ratio) becomes noticeable in high-frequency vibrations. The Timoshenko beam theory, which describes both bending deformation and shear deformation, would naturally be more suitable for medium-frequency vibration analysis. Nevertheless, vibrations of Timoshenko beam structures in a medium frequency region have not been well studied in the literature. This paper presents a new method for mid-frequency vibration analysis of two-dimensional Timoshenko beam structures. The proposed method, which is called the augmented Distributed Transfer Function Method (DTFM), models a Timoshenko beam structure by a spatial state-space formulation in the [Formula: see text]-domain. The augmented DTFM determines the frequency response of a beam structure in an exact and analytical form, in any frequency region covering low, middle, or high frequencies. Meanwhile, the proposed method provides the local information of a beam structure, such as displacement, shear deformation, bending moment and shear force at any location, which otherwise would be very difficult with energy-based methods. The medium-frequency analysis by the augmented DTFM is validated in numerical examples, where the efficiency and accuracy of the proposed method is demonstrated. Also, the effects of shear deformation on the dynamic behaviors of a beam structure at medium frequencies are examined through comparison of the Timoshenko beam and Euler–Bernoulli beam theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.