Abstract

Existing low-Earth-orbit synthetic aperture radar (SAR) algorithms generally assume that the data are azimuth invariant. However, this assumption does not hold for the medium-Earth-orbit (MEO) SAR systems due to the significantly longer azimuth integration time and complex imaging geometries. As a result, the MEO SAR data cannot be processed accurately and efficiently using the existing algorithms. To solve this problem, this letter proposes a two-step azimuth perturbation (AP) method that uses the first-step AP to remove the bulk azimuth variance at the range processing stage and the second-step AP to remove the residual variance at the azimuth processing stage. As an example, an improved range Doppler algorithm with the integrated two-step AP is discussed in this letter. Simulations of an L-band MEO SAR with 5-m resolution at 10 000-km orbit height are used to demonstrate the validity and accuracy of this algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.