Abstract

With the promising applications in e-Health and entertainment services, wireless body area network (WBAN) has attracted significant interest. One critical challenge for WBAN is to track and maintain the quality of service (QoS), e.g., delivery probability and latency, under the dynamic environment dictated by human mobility. Another important issue is to ensure the energy efficiency within such a resource-constrained network. In this paper, a new medium access control (MAC) protocol is proposed to tackle these two important challenges. We adopt a TDMA-based protocol and dynamically adjust the transmission order and transmission duration of the nodes based on channel status and application context of WBAN. The slot allocation is optimized by minimizing energy consumption of the nodes, subject to the delivery probability and throughput constraints. Moreover, we design a new synchronization scheme to reduce the synchronization overhead. Through developing an analytical model, we analyze how the protocol can adapt to different latency requirements in the healthcare monitoring service. Simulations results show that the proposed protocol outperforms CA-MAC and IEEE 802.15.6 MAC in terms of QoS and energy efficiency under extensive conditions. It also demonstrates more effective performance in highly heterogeneous WBAN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.