Abstract

Many species living in groups can perform prosocial behaviors via voluntarily helping others with or without benefits for themselves. To provide a better understanding of the neural basis of such prosocial behaviors, we adapted a preference lever-switching task in which mice can prevent harm to others by switching from using a lever that causes shocks to a conspecific one that does not. We found the harm avoidance behavior was mediated by self-experience and visual and social contact but not by gender or familiarity. By combining single-unit recordings and analysis of neural trajectory decoding, we demonstrated the dynamics of anterior cingulate cortex (ACC) neural activity changes synchronously with the harm avoidance performance of mice. In addition, ACC neurons projected to the mediodorsal thalamus (MDL) to modulate the harm avoidance behavior. Optogenetic activation of the ACC-MDL circuit during non-preferred lever pressing (nPLP) and inhibition of this circuit during preferred lever pressing (PLP) both resulted in the loss of harm avoidance ability. This study revealed the ACC-MDL circuit modulates prosocial behavior to avoid harm to conspecifics and may shed light on the treatment of neuropsychiatric disorders with dysfunction of prosocial behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call