Abstract

Although gilt silver threads were widely used for decorating historical textiles, their manufacturing techniques have been elusive for centuries. Contemporary written sources give only limited, sometimes ambiguous information, and detailed cross-sectional study of the microscale soft noble metal objects has been hindered by sample preparation. In this work, to give a thorough characterization of historical gilt silver threads, nano- and microscale textural, chemical, and structural data on cross sections, prepared by focused ion beam milling, were collected, using various electron-optical methods (high-resolution scanning electron microscopy (SEM), wavelength-dispersive electron probe microanalysis (EPMA), electron backscattered diffraction (EBSD) combined with energy-dispersive electron probe microanalysis (EDX), transmission electron microscopy (TEM) combined with EDX, and micro-Raman spectroscopy. The thickness of the gold coating varied between 70-400 nm. Data reveal nano- and microscale metallurgy-related, gilding-related and corrosion-related inhomogeneities in the silver base. These inhomogeneities account for the limitations of surface analysis when tracking gilding methods of historical metal threads, and explain why chemical information has to be connected to 3D texture on submicrometre scale. The geometry and chemical composition (lack of mercury, copper) of the gold/silver interface prove that the ancient gilding technology was diffusion bonding. The observed differences in the copper content of the silver base of the different thread types suggest intentional technological choice. Among the examined textiles of different ages (13th-17th centuries) and provenances narrow technological variation has been found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.