Abstract

Many old-growth forest stands in northwest Pakistan have been structurally transformed as a consequence of logging and livestock grazing, some of which are thereafter left to secondary succession. These forests represent an important resource for local inhabitants who gather and sell medicinal plants as part of their livelihood. With this in mind, the main objectives of our study were: (1) to assess differences in the structure of the tree layer and the abundance of medicinal plants among differently transformed forests, (2) to evaluate the recovery potential of medicinal plants under re-growth forests, and (3) to assess relationships between tree stand structural characteristics and the occurrence of medicinal plants. The first step of the study involved creating an approximate map covering an area of 90 km 2 for five forest-use types (old-growth forest, forest degraded by logging, derived woodland, agroforest and re-growth forest). Fifteen plots per forest-use type were randomly allocated at altitudes ranging from 2200 m to 2400 m asl, within which the abundance of 10 locally important medicinal herb species was assessed. The study stands differed greatly in tree basal area, which was highest in old-growth forest (48 m 2 ha −1), lowest in agroforest areas (6 m 2 ha −1) and intermediate in re-growth forest (20 m 2 ha −1). All ten medicinal plant species were encountered in old-growth and in re-growth forests, but only five of these species also occurred on agroforest plots. The mean coverage of study medicinal plants was highest in old-growth forest (7%), low in forest degraded by logging, derived woodland and agroforest (0.3–2%), and intermediate in re-growth forest (4%). The Jaccard abundance based similarity index indicates a considerable similarity (0.6) between re-growth and old growth forest for both trees and medicinal plants. The overall abundance of medicinal plants increased with increasing tree basal area and canopy cover. The abundance of some particular species decreased; however, the most sought-after medicinal species Bergenia ciliata, Valeriana jatamansi and Viola cancescens increased with tree basal area within specific forest-use type and also across forest-use types. In conclusion, our data suggest that anthropogenic forest degradation leads to a reduction in the abundance of economically viable medicinal plants for the study region. It is further indicated that this can be reversed if degraded forests are allowed to regenerate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.