Abstract

Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants.

Highlights

  • The use of textiles for medical applications can be traced back to the early ages in wound care applications such as sutures and wound dressings

  • The woven graft development timeline suggests that this technology has shown biomechanical benefits of using new structural components but there are very limited attempts which focus on improvising conventional weave designs to suit the arterial site

  • This paper reviewed the design aspect of medical textiles intended for vascular implant applications

Read more

Summary

Introduction

The use of textiles for medical applications can be traced back to the early ages in wound care applications such as sutures and wound dressings. The suitability of textiles, whether in fibre or fabric form, lies in their structural flexibility, whereby some exhibit properties similar to human tissues, which are composed of fibrous components Another advantage of textile-based substrates is their design flexibility (from fibre to fabric stage), which can be modified to emulate the mechanical behaviour (elasticity, strength, stiffness, fluid permeability) of native biological tissue. Among the soft tissue implants, design optimisation of vascular implants is considered as one of the most complex tasks and has been a continuing challenge for biomedical device engineers The reason for this is the inability to match biomechanical behaviour of a synthetic implant to that of an artery. The design feature of medical textiles is critical when they are being considered for vascular implant applications

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.