Abstract
AbstractThe COVID-19 has changed the scenario of patient care in most of the hospitals and healthcare centers throughout the world. Since pandemic is spread through contact with the COVID infected person, the most vulnerable community is doctors and healthcare workers. To avoid the mixing of COVID patients from other diseases, there is a need to be a separation, which will contain the spread of virus. As such, remote patient monitoring becomes very essential to take care of the patients under such situations. Because of this medical data is growing exponentially and needs to be analyzed continuously to improve the health care. Data analytics improved the performance of health care organization by proper decision making, accurate and timely information. Medical data can be explored from the sensors or medical equipments installed in the hospitals or can be collected from the fast-growing Internet of Things (IoT) devices. Visualizing the data and correlating the same with the patient monitoring for better treatment and health care is an essential part of it. This paper discusses various Machine Learning (ML) approaches for remote patient monitoring using medical IoT data for the Post-COVID patient care.KeywordsMedical IoT dataML approachesRemote monitoringPost-COVID care
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.