Abstract
This paper proposes aconvolutional neural network (CNN)-based efficient medical image super-resolution (SR) method in the shearlet domain. Because of differences between imaging mechanisms optimized for natural images and medical images, the design begins with building a medical image dataset for medical image SR and extracting effective areas to remarkably enhance the training effects of the CNN-based method. Then, a new medical image SR network structure—deep medical super-resolution network (DMSRN)—has been designed in which local residual learning is implemented through a recursive network and combined with global residual learning to heighten the depth of the network on the ground with no parameter increase. This effectively fixes the long-term dependency problem, which causes the prior state layers to barely have any effect on the following state layers. Last, the design addresses the problem of too-smooth reconstruction effects in the CNN-based method in the image space domain; shearlet transform is introduced to DMSRN to restore global topology through low-frequency sub-bands and restore local edge detail information through high-frequency sub-bands. Experimental results show that the proposed method is better than other state-of-the-art methods for medical image SR, which significantly promotes the restoration ability of texture structure and edge details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Multimedia Tools and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.