Abstract
Because of too much dependence on prior assumptions, parametric estimation methods using finite mixture models are sensitive to noise in image segmentation. In this study, we developed a new medical image segmentation method based on non-parametric mixture models with spatial information. First, we designed the non-parametric image mixture models based on the cosine orthogonal sequence and defined the spatial information functions to obtain the spatial neighborhood information. Second, we calculated the orthogonal polynomial coefficients and the mixing ratio of the models using expectation-maximization (EM) algorithm, to classify the images by Bayesian Principle. This method can effectively overcome the problem of model mismatch, restrain noise, and keep the edge property well. In comparison with other methods, our method appears to have a better performance in the segmentation of simulated brain images and computed tomography (CT) images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.