Abstract

In medical image segmentation tasks, it is hard for traditional Convolutional Neural Network (CNN) to capture essential information such as spatial structure and global contextual semantic features since it suffers from a limited receptive field. The deficiency weakens the CNN segmentation performance in the lesion boundary regions. To handle the aforementioned problems, a medical image mis-segmentation region refinement framework based on dynamic graph convolution is proposed to refine the boundary and under-segmentation regions. The proposed framework first employs a lightweight dual-path network to detect the boundaries and nearby regions, which can further obtain potentially misclassified pixels from the coarse segmentation results of the CNN. Then, we construct the pixels into the appropriate graphs by CNN-extracted features. Finally, we design a dynamic residual graph convolutional network to reclassify the graph nodes and generate the final refinement results. We chose UNet and its eight representative improved networks as the basic networks and tested them on the COVID, DSB, and BUSI datasets. Experiments demonstrated that the average Dice of our framework is improved by 1.79%, 2.29%, and 2.24%, the average IoU is improved by 2.30%, 3.53%, and 2.39%, and the Se is improved by 5.08%, 4.78%, and 5.31% respectively. The experimental results prove that the proposed framework has the refinement capability to remarkably strengthen the segmentation result of the basic network. Furthermore, the framework has the advantage of high portability and usability, which can be inserted into the end of mainstream medical image segmentation networks as a plug-and-play enhancement block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call