Abstract

As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image fusion method in nonsubsampled shearlet transform (NSST) domain is proposed. In the proposed method, the NSST decomposition is first performed on the source images to obtain their multiscale and multidirection representations. The high-frequency bands are fused by a parameter-adaptive pulse-coupled neural network (PA-PCNN) model, in which all the PCNN parameters can be adaptively estimated by the input band. The low-frequency bands are merged by a novel strategy that simultaneously addresses two crucial issues in medical image fusion, namely, energy preservation and detail extraction. Finally, the fused image is reconstructed by performing inverse NSST on the fused high-frequency and low-frequency bands. The effectiveness of the proposed method is verified by four different categories of medical image fusion problems [computed tomography (CT) and magnetic resonance (MR), MR-T1 and MR-T2, MR and positron emission tomography, and MR and single-photon emission CT] with more than 80 pairs of source images in total. Experimental results demonstrate that the proposed method can obtain more competitive performance in comparison to nine representative medical image fusion methods, leading to state-of-the-art results on both visual quality and objective assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.