Abstract

In recent years, the fractional order derivative has been introduced for image enhancement. It was proved that the medical image enhancement method based on the fractional order derivative has better effect than the method based on the integral order calculus. However, a priori information such as texture surrounding a pixel is normally ignored by the traditional fractional differential operators with the same value in the eight directions. To address the above problem, this paper presents a new medical image enhancement method by taking the merits of fractional differential and directional derivative. The proposed method considers the surrounding information (such as the image edge, clarity and texture information) and structural features of different pixels, as well as the directional derivative of each pixel in constructing the masks. By proposing this method, it can not only improve the high frequency information, but also improve the low frequency information of the image. Ultimately, it enhances the texture information of the image. Extensive experiments on four kinds of medical image demonstrate that the proposed algorithm is in favor of preserving more texture details and superior to the existing fractional differential algorithms on medical image enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.