Abstract

This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given matrix keeps the important information in the image and removing the unwanted information by solving the matrix completion problem that is defined by P. The quadratic programming use to solve the given three norm-based minimization problems. To improve the optimal solution a weighted exponential is used to compute the weighted vector of spectral that use to improve the threshold of optimal low rank that getting from solving the nuclear norm and spectral norm problems. The result of applying the proposed method on different types of images is given by adopting some metrics. The results showed the ability of the given methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.