Abstract

AbstractMedical images have become omnipresent in diagnosis and therapy. However, they can be affected by various types of noise that reduce image quality and make the final diagnostic decision difficult. The main objective of this research is to effectively remove the noise while preserving the important image characteristics. This paper proposes a novel approach for image denoising based on discrete wavelet transform (DWT) with the selection of the best decomposition level and mother wavelet. Then, the thresholding function is carried out in the detail coefficients. Optimal thresholding is done using new optimization techniques such as the crow search algorithm and social spider optimization techniques. Finally, the inverse of DWT is applied to reconstruct the denoised image. The proposed method is evaluated using peak signal to noise ratio, mean square error, and the structural similarity index measure. The experimental results show the efficiency of the optimization‐based denoising method over standard methods. Interesting results are obtained with all kinds of noise, and improvements about 30 dB can be reached with the Rician noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.