Abstract

A novel denoising approach is proposed that is based on a spectral data substitution mechanism through using a mathematical model of one-dimensional singularity function analysis (1-D SFA). The method consists in dividing the complete spectral domain of the noisy signal into two subsets: the preserved set where the spectral data are kept unchanged, and the substitution set where the original spectral data having lower signal-to-noise ratio (SNR) are replaced by those reconstructed using the 1-D SFA model. The preserved set containing original spectral data is determined according to the SNR of the spectrum. The singular points and singularity degrees in the 1-D SFA model are obtained through calculating finite difference of the noisy signal. The theoretical formulation and experimental results demonstrated that the proposed method allows more efficient denoising while introducing less distortion, and presents significant improvement over conventional denoising methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.