Abstract

The potential efficacy of energetic, charged particles in the treatment of human disease has long been recognized. For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and, more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 107-109 ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as 11C and 19Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call