Abstract

The development of bioactive, multi-functional, and cost-effective nanocomposite filaments for additive manufacturing (AM) is pivotal for the evolution of biomedical and healthcare sectors. Herein, an industrially scalable process is reported, to produce medical grade PA12/AgNP nanocomposites, through in-situ reactive melt-mixing, occurring within the filament extruder. Bactericidal elemental nanoparticles (Ag0) were formed by silver ions (Ag+) reducing from the Silver Nitrate (Ag2NO3) precursor, which was suitably added to the polymer melt. Polyvinyl Alcohol (PVA) was deployed in the compound melt, as a reducing macromolecular agent. The produced nanocomposite filaments were utilized to fabricate samples with Material Extrusion (MEX) AM. A total of sixteen (16) different tests were conducted on filaments and 3D-printed samples to assess their mechanical, rheological, thermal, and antibacterial characteristics, in accordance with international standards. The nanocomposites exhibited a significant mechanical reinforcement of up to 50% compared to PA12. Additionally, the Ag-based nanocomposites demonstrated remarkable antimicrobial behavior in the presence of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) microbes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call