Abstract

This study constructs a composite indicator system covering the core dimensions of medical equipment input and output. Based on this system, an innovative cone-constrained data envelopment analysis (DEA) model is designed. The model integrates the advantages of the analytic hierarchy process (AHP) with an improved criterion importance through intercriteria correlation (CRITIC) method to determine subjective and objective weights and employs game theory to obtain the final combined weights, which are further incorporated as constraints to form the cone-constrained DEA model. Finally, a bidirectional long short-term memory (Bi-LSTM) model with an attention mechanism is introduced for integration, aiming to provide a novel and practical model for evaluating the effectiveness of medical equipment. The proposed model has essential reference value for optimizing medical equipment management decision-making and investment strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.