Abstract
Objective: To review the outcome of dissolution therapy in low-density urinary stones defined by nonenhanced computed tomography. Materials and Methods: The outcome of dissolution therapy in patients treated between May 2011 and July 2016 was retrospectively reviewed. Potassium sodium hydrogen citrate was used in cases with syone of <800 Hounsfield units determined by non-enhanced computed tomography. A decrease of 50% in the long axis of the stone was defined as partial dissolution. Cases with complete and partial stone dissolution were taken as the treatment success group whereas those who could not tolerate the treatment and who has less than 50% decrease in stone size were noted as treatment failure. The patients were compared with respect to age, body mass index, stone size, stone density, duration of treatment and follow-up, urine pH and serum uric acid levels. Results: Of 46 patients 31 completed the treatment course. A full response was obtained in 22 (71%) and a partial response in 4 (12.9%) cases. The basic factors found to affect the success of treatment were stone surface area, pre-treatment urine pH and serum uric acid levels. Conclusion: Low-density urinary stones can be successfully treated with dissolution therapy. In patients with radiolucent stones, the stone density should be measured by using non-enhanced computed tomograms. In cases examined with suitable stone density, dissolution treatment can be started without determining the exact type of the stone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.