Abstract

We utilize a type of encryption scheme known as a Fully Homomorphic Encryption (FHE) scheme which allows for computation over encrypted data. Our encryption scheme is more efficient than other publicly available FHE schemes, making it more feasible. We conduct simulations based on common scenarios in which this ability is useful. In the first simulation we conduct time series analysis via Recursive Least Squares on both encrypted and unencrypted data and compare the results. In simulation one, it is shown that the error from computing over plaintext data is the same as the error for computing over encrypted data. In the second simulation, we compute two known diagnostic functions over publicly available data in order to calculate computational benchmarks. In simulation two, we see that computation over encrypted data using our method incurs relatively lower costs as compared to a majority of other publicly available methods. By successfully computing over encrypted data we have shown that our FHE scheme permits the use of machine learning algorithms that utilize polynomial kernel functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call