Abstract

BackgroundMetabolic syndrome (MetS) is associated with an increased risk of morbidity and mortality in almost all chronic diseases. The most frequent methods for the calculation of a continuous MetS (cMetS) score have used the standardized residuals in linear regression (z-score). Recently, emerging data suggest that one of the main genetic targets is the CAV1, which plays a crucial role in regulating body fat distribution. This study is designed to investigate the relationship between CAV1 rs3807992 genotypes and cMetS, and to determine whether body fat distribution plays a mediating role in this regard.MethodsThe current cross-sectional study was conducted on 386 overweight and obese females. The CAV1 rs3807992 and body composition were measured by the PCR–RFLP method and bioelectrical impedance analysis, respectively. Serum profile of HDL-C, TGs, FPG, and Insulin were measured by standard protocols.ResultsGG allele carriers had significantly lowered Z-MAP (p = 0.02), total cMetS (p = 0.03) and higher Z-HDL (p = 0.001) compared with (A) allele carriers. There was a significant specific indirect effect (standardized coefficient = 0.19; 95% CI 0.01–0.4) of Visceral fat level (VFL). Although, total body fat was significantly associated with CAV1 rs3807992 and cMetS, the specific indirect effect was not significant (standardized coefficient = 0.21; 95% CI − 0.006, 0.44). VFL contributed to significant indirect effects of 35% on the relationship between CAV1 and cMetS.ConclusionHigher visceral adipose tissue may affect the relationship between CAV1 and cMetS. Although CAV1 rs3807992 is linked to VFL in our study, the influence of this polymorphism on MetS is not via total fat.

Highlights

  • Metabolic syndrome (MetS) is associated with an increased risk of morbidity and mortality in almost all chronic diseases

  • The most frequent methods for the calculation of a continuous MetS (cMetS) score have used the standardized residuals in linear regression (z-score) [6]

  • In dominant comparison, the results of the study revealed that mean Body fat mass (BFM), Visceral fat level (VFL), and fat mass index (FMI)

Read more

Summary

Introduction

Metabolic syndrome (MetS) is associated with an increased risk of morbidity and mortality in almost all chronic diseases. The most frequent methods for the calculation of a continuous MetS (cMetS) score have used the standardized residuals in linear regression (z-score). Emerging data suggest that one of the main genetic targets is the CAV1, which plays a crucial role in regulating body fat distribution. This study is designed to investigate the relationship between CAV1 rs3807992 genotypes and cMetS, and to determine whether body fat distribution plays a mediating role in this regard. The most frequent methods for the calculation of a cMetS score have used the standardized residuals in linear regression (z-score) [6]. Emerging data suggest that one of the main genetic targets is the CAV1, which plays a crucial role in regulating FD [13, 14]. CAV1 is the main part of caveolae and has been extensively studied in dyslipidemia and cardiovascular diseases for its important role in the signal transduction, interaction with steroid receptors, involvement in the activation of ion channels, and cholesterol hemostasis [15, 16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.