Abstract

The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG—as possible targets of known protective signaling cascades—are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.

Highlights

  • Ischemia and reperfusion (I/R) injury is defined as the occurrence of myocardial damage due to the restoration of blood and oxygen supply after an ischemic event [1]

  • Besides its hyperosmolar and radical scavenging characteristics [13,14,15,16], we previously showed that mitochondrial ATPsensitive potassium channels are involved in myocardial protection triggered by Mannitol [12]

  • While these results present a connection between Mannitol and known myocardial targets of cardioprotective cascades— mitochondrial potassium channels—the intracellular pathway triggered by Mannitol upstream of mKATP channels remains unknown

Read more

Summary

Introduction

Ischemia and reperfusion (I/R) injury is defined as the occurrence of myocardial damage due to the restoration of blood and oxygen supply after an ischemic event [1]. Various pharmacological conditioning strategies have been investigated in recent years, with beneficial results on infarct size and myocardial function after an ischemic event [3,4]. These encouraging experimental findings have yet failed to be successfully transferred into clinical trials [5]. As Mannitol remains in the extracellular compartment, the question arises as to how the agent confers its intracellular effects. At this point, the Mannitol-induced cardiac signaling pathway upstream of mKATP channels is unknown

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call