Abstract

Elevated CO2 alters C3 plant tolerance to insect herbivory, as well as the induction kinetics of defense hormones salicylic acid (SA) and jasmonic acid (JA), but the underlying physiological mechanism causing this response is not well understood. In principle, SA could be induced under elevated CO2 by reactive oxygen signals generated in photosynthesis, ultimately influencing chemical defense. To test whether the effects of elevated CO2 on C3 plant chemical defense against herbivorous insects are modulated by photosynthesis, Arabidopsis thaliana var. Col-0 plants were grown in two 2 × 2 × 2 nested factorial combinations of ambient (400ppm) and elevated (800ppm) CO2, and two dimensions of light regimes comprising intensity ('mild' 150μmol E m-2s-1 vs. 'low' light, 75μmol E m-2s-1) and periodicity ('continuous', 150μmol E m-2s-1 vs. 'dynamic', in which lights were turned off, then on, for 15min every 2h). Plants were challenged with herbivore damage from third instar Trichoplusia ni (cabbage looper). Consistent with experimental predictions, elevated CO2 interacted with light as well as herbivory to induce foliar concentration of SA, while JA was suppressed. Under dynamic light, foliar content of total glucosinolates was reduced. Under combination of elevated CO2 and dynamic light, T. ni removed significantly more leaf tissue relative to control plants. The observations that CO2 and light interactively modulate defense against T. ni in A. thaliana provide an empirical argument for a role of photosynthesis in C3 plant chemical defense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.