Abstract

BackgroundIncreased coffee intake is associated with reduced serum urate concentrations and lower risk of gout. Specific alleles of the GCKR, ABCG2, MLXIPL, and CYP1A2 genes have been associated with both reduced coffee intake and increased serum urate in separate genome-wide association studies (GWAS). The aim of this study was to determine whether these single nucleotide polymorphisms (SNPs) influence the risk of gout through their effects on coffee consumption.MethodsThis research was conducted using the UK Biobank Resource. Data were available for 130,966 European participants aged 40–69 years. Gout status and coffee intake were tested for association with four urate-associated SNPs: GCKR (rs1260326), ABCG2 (rs2231142), MLXIPL (rs1178977), and CYP1A2 (rs2472297). Multiple regression and path analysis were used to examine whether coffee consumption mediated the effect of the SNPs on gout risk.ResultsCoffee consumption was inversely associated with gout (multivariate adjusted odds ratio (95% confidence interval (CI)) for any coffee consumption 0.75 (0.67–0.84, P = 9 × 10−7)). There was also evidence of a dose-effect with multivariate adjusted odds ratio (95% CI) per cup consumed per day of 0.85 (0.82–0.87, P = 9 × 10−32). The urate-increasing GCKR, ABCG2, MLXIPL, and CYP1A2 alleles were associated with reduced daily coffee consumption, with the strongest associations for CYP1A2 (beta −0.30, P = 8 × 10−40), and MLXIPL (beta −0.17, P = 3 × 10−8), and weaker associations for GCKR (beta −0.07, P = 3 × 10−10) and ABCG2 (beta −0.09, P = 2 × 10−9). The urate-increasing GCKR and ABCG2 alleles were associated with gout (multivariate adjusted p < 5 × 10−8 for both), but the urate-increasing MLXIPL and CYP1A2 alleles were not. In mediation analysis, the direct effects of GCKR and ABCG2 accounted for most of the total effect on gout risk, with much smaller indirect effects mediated by coffee consumption.ConclusionCoffee consumption is inversely associated with risk of gout. Although alleles at several SNPs associate with both lower coffee consumption and higher risk of gout, these SNPs largely influence gout risk directly, rather than indirectly through effects on coffee consumption.

Highlights

  • Increased coffee intake is associated with reduced serum urate concentrations and lower risk of gout

  • Coffee consumption and gout Coffee consumption was inversely associated with gout (Table 3)

  • The direct effect of the urate-associated Single nucleotide polymorphism (SNP) accounted for most of the total observed effect on gout risk, with much smaller indirect effects mediated by coffee consumption

Read more

Summary

Introduction

Increased coffee intake is associated with reduced serum urate concentrations and lower risk of gout. Previous genome-wide association studies (GWAS) have identified 28 single nucleotide polymorphisms (SNPs) associated with serum urate concentration [2]. Some of these SNPs encode renal and/or gut urate transport-related proteins and associate with the risk of gout [2,3,4,5]. Multiple studies have reported that increased coffee intake is associated with reduced serum urate [8,9,10,11,12] and risk of developing gout [13, 14] This is the case for both caffeinated and de-caffeinated coffee. This association has been attributed to several potential mechanisms including improved insulin resistance [15,16,17,18,19,20,21] and caffeine-mediated inhibition of xanthine oxidase [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.