Abstract

Asthma is a complex pulmonary inflammatory disease that can be promoted by air pollutants such as PM2.5 and formaldehyde (FA). However, existent experimental evidence principally focuses on the negative influence of a single air pollutant, neglecting the possible synergistic effect in biological responses to mixture of these pollutants, a more common situation in our daily life. In this study, allergic Balb/c mice were exposed to a mixture of PM2.5 and FA, and their toxicological effects and mechanisms were explored. It is demonstrated that the combined exposure to PM2.5 and FA can greatly aggravate allergic asthma in mice. When compared with exposure to PM2.5 or FA alone, the co-exposure showed a certain synergistic effect. Increased levels of ROS, inflammatory factors and total serum immunoglobulin E were concomitant with this deterioration. Furthermore, results suggested that co-exposure exacerbated the activation of TRPV1 signal pathways, with an enhancement in substance P and calcitonin gene-related peptide production, which contributed to inflammation in asthma by neurogenic inflammation. The study also proved that capsazepine treatment could reduce the levels of not only pro-inflammatory neuropeptides, but also oxidative stress. It is concluded that co-exposure to PM2.5 and FA exacerbated allergic asthma through oxidative stress and enhanced TRPV1 activation.

Highlights

  • P (SP) and the calcitonin gene related peptides (CGRP)[12]

  • It has been suggested that SP and CGRP, released by an activated TRPV1 ion channel, contribute to inflammation in asthma by neurogenic inflammation, including the triggering of specific receptors, and the production of additional inflammatory mediators like cytokines, oxygen radicals and histamine

  • Many studies have shown that SP and CGRP, released by an activated TRPV1 receptor, could stimulate NADPH oxidase to induce the overproduction of reactive oxygen species (ROS)

Read more

Summary

Introduction

It has been suggested that SP and CGRP, released by an activated TRPV1 ion channel, contribute to inflammation in asthma by neurogenic inflammation, including the triggering of specific receptors, and the production of additional inflammatory mediators like cytokines, oxygen radicals and histamine. This inflammation induces an increase in vascular permeability, extravasation of plasma and leukocytes, mucus hypersecretion and airway constriction[13,14]. Many studies have shown that SP and CGRP, released by an activated TRPV1 receptor, could stimulate NADPH oxidase to induce the overproduction of ROS. We hope that our findings can be helpful in getting an effective new approach to fight allergic asthma exacerbated by environmental contaminants

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call