Abstract

We report the synthesis of a full-fledged family of covalent electron donor-acceptor1-acceptor2 conjugates and their charge-transfer characterization by means of advanced photophysical assays. By virtue of variable excited state energies and electron donor strengths, either Zn(II)Porphyrins or Zn(II)Phthalocyanines were linked to different electron-transport chains featuring pairs of electron accepting fullerenes, that is, C60 and C70. In this way, a fine-tuned redox gradient is established to power a unidirectional, long-range charge transport from the excited-state electron donor via a transient C60•- toward C70•-. This strategy helps minimize energy losses in the reductive, short-range charge shift from C60 to C70. At the forefront of our investigations are excited-state dynamics deduced from femtosecond transient absorption spectroscopic measurements and subsequent computational deconvolution of the transient absorption spectra. These provide evidence for cascades of short-range charge-transfer processes, including reductive charge shift reactions between the two electron-accepting fullerenes, and for kinetics that are influenced by the nature and length of the respective spacer. Of key importance is the postulate of a mediating state in the charge-shift reaction at weak electronic couplings. Our results point to an intimate relationship between triplet-triplet energy transfer and charge transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.