Abstract
The development of redox‐triggerable peptide hydrogels poses fundamental challenges, since the highly specific peptide architectures required inevitably limit the versatility of such materials. A powerful, yet rarely applied approach to bypass those barriers is the application of a mediating redox reaction to gradually decrease the pH during hydrogel formation. We report a versatile strategy to trigger the formation of peptide hydrogels from readily accessible acid‐triggerable gelators by generating protons by oxidation of thioethers with triiodide. Adding thiodiglycol as a readily available thioether auxiliary to the basic precursor solution of a peptide gelator efficiently yielded hydrogels after mixing with triiodide, as studied in detail for Nap‐FF and demonstrated for other peptides. Furthermore, incorporation of the thioether moiety in the gelator backbone via the amino acid methionine, as shown for the tailormade Nap‐FMDM peptide, reduces the number of required additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.