Abstract
L-3,4-dihydroxyphenylalanine (L-dopa) is not metabolized within human epidermal Langerhans cells (LC); yet they can take up substantial amounts of this amino acid which subsequently can be released into the extracellular space. We recently reported that human epidermal energy metabolism is predominantly anaerobic and that the influx mechanism is a unidirectional L-dopa/proton counter-transport system and now we describe conditions for the mediated transport of L-dopa out of the LC. It is demonstrated that certain amino acids and one dipeptide can effectively trigger the efflux of L-dopa taken up by the LC.Thus, alpha-methyl-dopa (alpha-m-dopa), D-dopa and the dipeptide, met-ala at the outside of the plasma membrane stimulated the efflux of L-dopa from L-dopa loaded LC. Similar effects were achieved by a variety of other amino acids in the extracellular fluid while some other amino acids were inactive. The time required for 50% D-methionine-induced exodus of L-dopa from L-dopa loaded LC was in the range of 5-7 min and a complete exodus of L-dopa was attained at about 20 min of incubation. This dislocation of L-dopa to the extracellular fluid is interpreted as an expression of trans-stimulation. In the case of alpha-m-dopa, D-dopa and met-ala, which admittedly were not able to penetrate the plasma membrane of LC, the concept of trans-stimulation was given a new purport, since none of them were able to participate in an exchange reaction. Finally, it could be concluded that L-dopa escaped by a route different from the one responsible for L-dopa uptake in LC.Thus, while the influx of L-dopa supports extrusion of protons deriving from anaerobic glycolysis in the LC, L-dopa efflux can provide the cells with useful amino acids in an energy-saving way, altogether a remarkable biological process. From this follows that L-dopa has a biological function of its own, besides being a precursor in the catecholamine and pigment syntheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.