Abstract

This Monte Carlo simulation study investigated the impact of nonnormality on estimating and testing mediated effects with the parallel process latent growth model and 3 popular methods for testing the mediated effect (i.e., Sobel’s test, the asymmetric confidence limits, and the bias-corrected bootstrap). It was found that nonnormality had little effect on the estimates of the mediated effect, standard errors, empirical Type I error, and power rates in most conditions. In terms of empirical Type I error and power rates, the bias-corrected bootstrap performed best. Sobel’s test produced very conservative Type I error rates when the estimated mediated effect and standard error had a relationship, but when the relationship was weak or did not exist, the Type I error was closer to the nominal .05 value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.