Abstract

To enhance the traditional anaerobic treatment process, zero-valent iron (Fe0) and graphene oxide (GO) have recently been used and studied. However, there are drawbacks in using GO and Fe0 alone. In this study, Fe0/GO composite was utilized in anaerobic treatment of high strength wastewater to compensate for the drawbacks, and the promoting effects and the mechanism were investigated. The results verified that Fe0/GO improved COD removal rate and gas production which reached 91.8 % and 511 mL/12 h, respectively, and a better sludge flocculation performance was obtained. Furthermore, the fermentation type was optimized due to alteration of pH and oxidation-reduction potential by Fe0/GO, resulting in increment of acetic acid production and reduction of propionic acid accumulation. A detailed microbial characterization indicated that Fe0/GO had a significant effect on hydrotrophic methanogens (Methanofastidiosum and Methanofastidiosales), increasing from 1.79 % to 24.11 %. The distribution of hydrolytic fermentation bacteria, acetogenic bacteria and methanogens was more balanced and more diverse in the Fe0/GO system, indicating that a stable co-metabolizing microbial community was maintained. Moreover, the highest electron transport system activity and Fe2+ and Fe3+ concentration demonstrated that Fe0/GO could improve the intracellular and interspecific electron transfer. The conductivity, current response, cyclic voltammetry area were the highest and the internal resistance was the lowest, indicating that Fe0/GO could improve the extracellular electron transfer. The stable co-metabolizing microbial community and efficiency intra/extracellular electron transfer promoted the anaerobic wastewater treatment. This study could provide theoretical support for the practical application of developing technologies for anaerobic wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call