Abstract

ABSTRACT As lung cancer evolves, the presence of potentially malignant lymph nodes must be assessed to properly estimate disease progression and select the best treatment strategy. A method for accurate and automatic segmentation is hence decisive for quantitatively describing lymph nodes. In this study, the use of 3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled entire volumes, is investigated. As lymph nodes have similar attenuation values to nearby anatomical structures, we use the knowledge of other organs as prior information to guide the segmentation. To assess the performances, a 5-fold cross-validation strategy was followed over a dataset of 120 contrast-enhanced CT volumes. For the 1178 lymph nodes with a short-axis diameter mm, our best-performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5 and a segmentation overlap of 80.5%. Fusing a slab-wise and a full volume approach within an ensemble scheme generated the best performances. The anatomical priors guiding strategy is promising, yet a larger set than four organs appears needed to generate an optimal benefit. A larger dataset is also mandatory given the wide range of expressions a lymph node can exhibit (i.e. shape, location and attenuation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.