Abstract
Outlier-robust estimators are proposed for linear dynamic fixed-effect panel data models where the number of observations is large and the number of time periods is small. In the simple setting of estimating the AR(1) coefficient from stationary Gaussian panel data, the estimator is (a linear transformation of) the median ratio of adjacent first-differenced data pairs. Its influence function is bounded under contamination by independent or patched additive outliers. The influence function and the gross-error sensitivity are derived. When there are independent additive outliers, the estimator is asymptotically biased towards 0, but its sign remains correct and it has a reasonably high breakdown point. When there are patched additive outliers with point mass distribution, the asymptotic bias is upward in nearly all cases; breakdown towards 1 can occur; and the associated breakdown point increases with the patch length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.