Abstract
Efficient architectures and implementations of median filters have been well investigated in the past. In this article, we focus on median filters for very big scientific applications with very large windows and an infinite stream of data, inspired by big data needs in the Square Kilometre Array (SKA) pulsar search engine, but transferable to other big data domains. We propose a novel approach for very large rectangular windows on an FPGA accelerator device able to support the processing of infinite streams of data. OpenCL is used for rapid parameter sweeping and design space exploration based on a pipelined model of the system. Evaluation on a host/accelerator system with an Arria 10 device surpassed 64 million values processed per second considered for the SKA real time requirement, achieving 83.4M value/s while reading from/writing to disk. These results are compared with a state-of-the-art software implementation only achieving 41M value/s for over twice the total system energy cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Reconfigurable Technology and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.