Abstract

Previous neuropsychological findings have implicated medial temporal lobe (MTL) structures in retaining object-location relations over the course of short delays, but MTL effects have not always been reported in neuroimaging investigations with similar short-term memory requirements. Here, we used event-related functional magnetic resonance imaging to test the hypothesis that the hippocampus and related MTL structures support accurate retention of relational memory representations, even across short delays. On every trial, four objects were presented, each in one of nine possible locations of a three-dimensional grid. Participants were to mentally rotate the grid and then maintain the rotated representation in anticipation of a test stimulus: a rendering of the grid, rotated 90 degrees from the original viewpoint. The test stimulus was either a "match" display, in which object-location relations were intact, or a "mismatch" display, in which one object occupied a new, previously unfilled location (mismatch position), or two objects had swapped locations (mismatch swap). Encoding phase activation in anterior and posterior regions of the left hippocampus, and in bilateral perirhinal cortex, predicted subsequent accuracy on the short-term memory decision, as did bilateral posterior hippocampal activity after the test stimulus. Notably, activation in these posterior hippocampal regions was also sensitive to the degree to which object-location bindings were preserved in the test stimulus; activation was greatest for match displays, followed by mismatch-position displays, and finally mismatch-swap displays. These results indicate that the hippocampus and related MTL structures contribute to successful encoding and retrieval of relational information in visual short-term memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.