Abstract

Rats implanted with hippocampal recording electrodes were tested in a wheel-running apparatus under three conditions: (1) independent electrical stimulation of the medial septal nucleus (MS); (2) independent electrical stimulation of the posterior hypothalamic nucleus (PH); and (3) combined electrical stimulation of the MS and PH using pairings of two stimulation conditions, 7 or 10 Hz stimulation of the MS, and a low- or high-intensity PH stimulation. Quantitative measures of running speed were taken, and hippocampal recordings were subjected to fast-Fourier transform analysis. Electrical stimulation of the PH induced wheel-running behavior; running speed and the accompanying hippocampus (HPC) theta frequency increased with increase in stimulation intensity. Electrical stimulation of the MS failed to induce wheel-running behavior despite the fact that HPC theta was induced at the frequency of the applied stimulation (7 and 10 Hz). Electrical stimulation of the MS reset the frequency of HPC theta induced by PH stimulation in both the upward and downward directions and increased theta power, while wheel-running speed was modulated in a downward direction only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.