Abstract
Functional activation in human brain produces an increase in glycolytic metabolism. Animal studies suggest activation-induced glycolysis is coupled to brain glycogenolysis. Medial forebrain bundle (MFB) stimulation activates the release of neurotransmitters which promote neocortical glycogenolysis in vitro. In the present study, active glycogen phosphorylase (GP), an index of glycogenolysis, is assessed histochemically in rat brain after 15 min of MFB self-stimulation. Active GP increased significantly in layers 4, 5b and 6 of granular neocortex ipsilateral to MFB self-stimulation. Restriction of increased glycogenolysis to granular neocortex suggests an important functional interaction between sensory neocortical processing and ascending MFB systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.