Abstract

One way medial efferents are thought to inhibit responses of auditory-nerve fibers (ANFs) is by reducing the gain of the cochlear amplifier thereby reducing motion of the basilar membrane. If this is the only mechanism of medial efferent inhibition, then medial efferents would not be expected to inhibit responses where the cochlear amplifier has little effect, i.e., at sound frequencies in the tails of tuning curves. Inhibition at tail frequencies was tested for by obtaining randomized rate-level functions from cat ANFs with high characteristic frequencies (CF > or = 5 kHz), stimulated with tones two or more octaves below CF. It was found that electrical stimulation of medial efferents can indeed inhibit ANF responses to tail-frequency tones. The amplitude of efferent inhibition depended on both sound level (largest near to threshold) and frequency (largest two to three octaves below CF). On average, inhibition of high-CF ANFs responding to 1 kHz tones was around 5 dB. Although an efferent reduction of basilar-membrane motion cannot be ruled out as the mechanism producing the inhibition of ANF responses to tail frequency tones, it seems more likely that efferents produce this effect by changing the micromechanics of the cochlear partition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call