Abstract

The optimal treatment for concurrent injuries to the medial collateral and anterior cruciate ligaments has not been determined, despite numerous clinical and laboratory studies. The objective of this study was to examine the effect of surgical repair of the medial collateral ligament on its biomechanical and biochemical properties 52 weeks after such injuries. In the left knee of 12 skeletally mature New Zealand White rabbits, the medial collateral ligament was torn and the anterior cruciate ligament was transected and then reconstructed. This is an experimental model previously developed in our laboratory. In six rabbits, the torn ends of the medial collateral ligament were repaired, and in the remaining six rabbits, the ligament was not repaired. Fifty-two weeks after injury, we examined varus-valgus and anterior-posterior knee stability; structural properties of the femur-medial collateral ligament-tibia complex; and mechanical properties, collagen content, and mature collagen crosslinking of the medial collateral ligament. We could not detect significant differences between repair and nonrepair groups for any biomechanical or biochemical property. Our data support clinical findings that when the medial collateral and anterior cruciate ligaments are injured concurrently and the anterior cruciate ligament is reconstructed, conservative treatment of the ruptured medial collateral ligament can result in successful healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.