Abstract

BackgroundMany injury prevention and rehabilitation programs aim to train hamstring and quadriceps co-activation to constrain excessive anterior tibial translation and protect the anterior cruciate ligament (ACL) from injury. However, despite strong clinical belief in its efficacy, primary evidence supporting training co-activation of the hamstrings and quadriceps muscles for ACL injury prevention and rehabilitation is quite limited. Therefore, the purpose of the study presented in this paper was to determine if hamstring-quadriceps co-activation alters knee joint kinematics, and also establish if it affects ACL elongation.MethodsA computed tomography (CT) scan from each participant’s dominant leg was acquired prior to performing two step-ups under fluoroscopy: one with ‘natural’ hamstring-quadriceps co-activation, one with deliberate co-activation. Electromyography was used to confirm increased motor unit recruitment. The CT scan was registered to fluoroscopy for 4-D modeling, and knee joint kinematics subsequently measured. Anterior cruciate ligament attachments were mapped to the 4-D models and its length was assumed from the distance between attachments. Anterior cruciate ligament elongation was derived from the change in distance between those points as they moved relative to each other.ResultsReduced ACL elongation as well as knee joint rotation, abduction, translation, and distraction was observed for the step up with increased co-activation. A relationship was shown to exist for change in ACL length with knee abduction (r = 0.91; p ≤ 0.001), with distraction (r = −0.70; p = 0.02 for relationship with compression), and with anterior tibial translation (r = 0.52; p = 0.01). However, ACL elongation was not associated with internal rotation or medial translation. Medial hamstring-quadriceps co-activation was associated with a shorter ACL (r = −0.71; p = 0.01), and lateral hamstring-quadriceps co-activation was related to ACL elongation (r = 0.46; p = 0.05).ConclusionNet co-activation of the hamstrings and quadriceps muscles will likely reduce ACL elongation provided that the proportion of medial hamstring-quadriceps co-activation exceeds lateral.

Highlights

  • Many injury prevention and rehabilitation programs aim to train hamstring and quadriceps co-activation to constrain excessive anterior tibial translation and protect the anterior cruciate ligament (ACL) from injury

  • Stepping-up with deliberate co-activation consistently resulted in reduced kinematic excursions and decreased elongation of the ACL during the step-up task (Table 3)

  • No significant relationship was demonstrated between ACL elongation and internal rotation (r = 0.07; p = 0.85), or for ACL elongation and medial translation (r = 0.44; p = 0.21)

Read more

Summary

Introduction

Many injury prevention and rehabilitation programs aim to train hamstring and quadriceps co-activation to constrain excessive anterior tibial translation and protect the anterior cruciate ligament (ACL) from injury. Primary evidence supporting the role of hamstring-quadriceps co-activation for constraining tibial translation and subsequent protection of the ACL from injury is limited. This absence of evidence in spite of strong clinical belief in the efficacy of co-activation is likely due to the difficulty of measuring in-vivo tibial translation or ACL elongation while performing a dynamic task. More recently an in-vivo study which used fluoroscopy and electromyography (EMG) attempted to explain anterior tibial translation (ATT) and the role of hamstring-quadriceps co-activation in an ACL deficient population during both open and closed kinetic chain tasks (seated knee extension and step up respectively) [2]. The findings from that study are not conclusive since the EMG and fluoroscopy were not conducted concurrently and ATT was assumed from measuring patella tendon angle [2]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.