Abstract

Distributed representations of medical concepts have been used to support downstream clinical tasks recently. Electronic Health Records (EHR) capture different aspects of patients' hospital encounters and serve as a rich source for augmenting clinical decision making by learning robust medical concept embeddings. However, the same medical concept can be recorded in different modalities (e.g., clinical notes, lab results)-with each capturing salient information unique to that modality-and a holistic representation calls for relevant feature ensemble from all information sources. We hypothesize that representations learned from heterogeneous data types would lead to performance enhancement on various clinical informatics and predictive modeling tasks. To this end, our proposed approach makes use of meta-embeddings, embeddings aggregated from learned embeddings. Firstly, modality-specific embeddings for each medical concept is learned with graph autoencoders. The ensemble of all the embeddings is then modeled as a meta-embedding learning problem to incorporate their correlating and complementary information through a joint reconstruction. Empirical results of our model on both quantitative and qualitative clinical evaluations have shown improvements over state-of-the-art embedding models, thus validating our hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.