Abstract

Ground-based proximal sensing of vineyard features is gaining interest due to its ability to serve in even quite small plots with the advantage of being conducted concurrently with normal vineyard practices (i.e., spraying, pruning or soil tilling) with no dependence upon weather conditions, external services or law-imposed limitations. The purpose of the present work was to test performance of the new terrestrial multi-sensor MECS-VINE® in terms of reliability and degree of correlation with several canopy growth and yield parameters in the grapevine. MECS-VINE®, once conveniently positioned in front of the tractor, can provide simultaneous assessment of growth features and microclimate of specific canopy sections of the two adjacent row sides. MECS-VINE® integrates a series of microclimate sensors (air relative humidity, air and surface temperature) with two (left and right) matrix-based optical RGB imaging sensors and a related algorithm, termed Canoyct). MECS-VINE® was run five times along the season in a mature cv. Barbera vineyard and a Canopy Index (CI, pure number varying from 0 to 1000), calculated through its built-in algorithm, validated vs. canopy structure parameters (i.e., leaf layer number, fractions of canopy gaps and interior leaves) derived from point quadrat analysis. Results showed that CI was highly correlated vs. any canopy parameter at any date, although the closest relationships were found for CI vs. fraction of canopy gaps (R2 = 0.97) and leaf layer number (R2 = 0.97) for data pooled over 24 test vines. While correlations against canopy light interception and total lateral leaf area were still unsatisfactory, a good correlation was found vs. cluster and berry weight (R2 = 0.76 and 0.71, respectively) suggesting a good potential also for yield estimates. Besides the quite satisfactory calibration provided, main improvements of MECS-VINE® usage versus other current equipment are: (i) MECS-VINE® delivers a segmented evaluation of the canopy up to 15 different sectors, therefore allowing to differentiate canopy structure and density at specific and crucial canopy segments (i.e., basal part where clusters are located) and (ii) the sensor is optimized to work at any time of the day with any weather condition without the need of any supplemental lighting system.

Highlights

  • The advent of “precision viticulture” (PV) is, under no doubt, a major innovation breakthrough for a crop which, at least in European countries, is strongly bound to tradition, often referred as terroir [1]

  • In this paper we describe the new proximal MECS-VINE®sensor having original features that may be summarized as follows: (i) is a multi-parameter on-the-go sensing system able to map simultaneously canopy development and several ambient and canopy microclimate parameters; (ii) its unique operating features allow canopy development to be evaluated in 15 cm tall canopy sectors covering the whole canopy height; the MECS-VINE® sensor is mounted on the front of the tractor without any additional over-row supporting structure needed

  • As acknowledged by authors themselves in their concluding remarks an unreached task of the technique is enabling effective image acquisition “on the go”. To this purpose the MECS-VINE® performance assessed in this study provides original and novel advancement while paving the way to a series of interesting vineyard applications

Read more

Summary

Introduction

The advent of “precision viticulture” (PV) is, under no doubt, a major innovation breakthrough for a crop which, at least in European countries, is strongly bound to tradition, often referred as terroir [1]. With the exception of the overhead “tendone” trellis, most vineyards worldwide feature a discontinuous ground cover (i.e., segments of usually tall and narrow vegetation alternating with strips of exposed ground) and for such hedgerow training systems between-row distance can vary anywhere for 1 to 4 m, whereas in-the rows spacing is under most cases between 0.6 and 3 m Given such conditions, a satellite aerial image performing, for instance, at a pixel resolution of 5 m × 5 m is unsuitable to either distinguish canopy geometry of different trellises or appreciate variability occurring at the single vine or portion thereof basis

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.