Abstract

Age‐related cognitive decline in neurodegenerative diseases, such as Alzheimer's disease (AD), is associated with the deficits of synaptic plasticity. Therefore, exploring promising targets to enhance synaptic plasticity in neurodegenerative disorders is crucial. It has been demonstrated that methyl‐CpG binding protein 2 (MeCP2) plays a vital role in neuronal development and MeCP2 malfunction causes various neurodevelopmental disorders. However, the role of MeCP2 in neurodegenerative diseases has been less reported. In the study, we found that MeCP2 expression in the hippocampus was reduced in the hippocampus of senescence‐accelerated mice P8 (SAMP8) mice. Overexpression of hippocampal MeCP2 could elevate synaptic plasticity and cognitive function in SAMP8 mice, while knockdown of MeCP2 impaired synaptic plasticity and cognitive function in senescence accelerated‐resistant 1 (SAMR1) mice. MeCP2‐mediated regulation of synaptic plasticity may be associated with CREB1 pathway. These results suggest that MeCP2 plays a vital role in age‐related cognitive decline by regulating synaptic plasticity and indicate that MeCP2 may be promising targets for the treatment of age‐related cognitive decline in neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.