Abstract

The condition of bridges is critical for the safety of the traveling public. Bridges deteriorate with time as a result of material aging, excessive loading, environmental effects, and inadequate maintenance. The current practice of nondestructive evaluation (NDE) of bridge decks cannot meet the increasing demands for highly efficient, cost-effective, and safety-guaranteed inspection and evaluation. In this paper, a mechatronic systems design for an autonomous robotic system for highly efficient bridge deck inspection and evaluation is presented. An autonomous holonomic mobile robot is used as a platform to carry various NDE sensing systems for simultaneous and fast data collection. The robot's NDE sensor suite includes ground penetrating radar arrays, acoustic/seismic arrays, electrical resistivity sensors, and video cameras. Besides the NDE sensors, the robot is also equipped with various onboard navigation sensors such as global positioning system (GPS), inertial measurement units (IMU), laser scanner, etc. An integration scheme is presented to fuse the measurements from the GPS, the IMU and the wheel encoders for high-accuracy robot localization. The performance of the robotic NDE system development is demonstrated through extensive testing experiments and field deployments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call