Abstract

Author SummaryHow are mechanical forces that act on the surface of a cell transformed into biochemical signals within the cell? Studies of isolated proteins suggest that some of them can stretch, but whether this also happens in living cells remains unclear. In this study, we have been able to measure the stretching of single molecules of a cellular adhesion protein called talin in vivo by tagging each end of the protein with a different fluorescent marker and observing changes in the distance between the two markers with a new microscopic method. Talin is a large cellular protein that concentrates at sites where the cell attaches to the substratum and links integrins in the cell membrane to the actin filament network in the cell. In our study, a green tag at the integrin-binding site was close to the cell surface, whereas a red tag at the actin-binding site was displaced inward by actin flow. We observed repeated protein stretching to 5–8 times the native protein length and relaxation linked to the transduction process in living cells in culture. Individual molecules stretched for 6–16 seconds over ranges of 50–350 nm. Cell adhesion sites, where hundreds of talin molecules were displaced in concert, had similar dynamics. These cycles of stretching and relaxation required the contractile protein myosin. The head domain of vinculin—an adhesion site protein that binds strongly to the stretched talin—kept the adhesions stretched and blocked large oscillations in length. These observations indicate that there is repeated stretching of talin, and that adhesion proteins play a role in the transduction of mechanical signals into biochemical signals through binding and release of vinculin and possibly other focal adhesion proteins.

Highlights

  • The transduction of cellular forces and substrate rigidity into a biochemical signal is a critical step in the control of cell viability and differentiation as well as the regulation of tissue and cell morphology [1,2]

  • The extracellular matrix is under significant stress, and the strain of Fibronectin [9] has been established in a fluorescence resonance energy transfer (FRET) assay but there is not a quantitative measure of protein stretching in cells

  • The head domain of vinculin—an adhesion site protein that binds strongly to the stretched talin—kept the adhesions stretched and blocked large oscillations in length. These observations indicate that there is repeated stretching of talin, and that adhesion proteins play a role in the transduction of mechanical signals into biochemical signals through binding and release of vinculin and possibly other focal adhesion proteins

Read more

Summary

Introduction

The transduction of cellular forces and substrate rigidity into a biochemical signal is a critical step in the control of cell viability and differentiation as well as the regulation of tissue and cell morphology [1,2]. Several recent studies have shown that stretching of proteins in vitro can produce a biochemical change either by uncovering tryosine phosphorylation sites in p130Cas [3] or vinculin binding sites in talin [1]. The extracellular matrix is under significant stress, and the strain of Fibronectin [9] has been established in a fluorescence resonance energy transfer (FRET) assay but there is not a quantitative measure of protein stretching in cells. This raises the question of whether protein stretching (domain unfolding) plays a physiological role in the normal sensing of the mechanical microenvironment. The extent of stretch and the length of time in the stretched state provide important constraints on any model of mechanotransduction

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call