Abstract

This chapter attempts to describe the intricate relation between blood flow dynamics (hemodynamics) and heart development. The heart is one of the first functional organs, and as soon as a primitive tubular heart structure is formed, it starts pumping blood. The tubular heart, which is initially straight, bends and loops, and cardiac looping is followed by heart septation and valve formation. Therefore, important cardiogenesis events occur under blood flow conditions, which in turn influence cardiovascular development. Blood flow is sensed by cardiovascular cells, initiating physical, chemical, and biological responses, which influence the way the heart develops. In essence, blood flow provides mechanical control feedback during heart development, allowing the heart and embryo to adapt to the ever-changing hemodynamic conditions, while ensuring proper cardiac development that optimizes heart function. 130However, when conditions are too far from normal, these same control mechanisms can instead lead to detrimental modifications contributing to heart malformations. We start this chapter by briefly describing how blood flow affects tissues through mechanotransduction mechanisms. Then we describe normal cardiovascular development and how altered blood flow dynamics could lead to cardiac malformation phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call